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Abstract 
 

Human respiration induces considerable external and internal motion in the thoracic and abdominal regions. Tracking and 
modeling of this motion is an important task for accurate treatment planning and dose calculation during external beam 
radiotherapy. Inaccurate motion tracking can cause severe issues such as errors in target/normal tissue delineation and incre-
ment in the volume of healthy tis-sues exposed to high doses. Different methods have been introduced to model the respiratory 
motion, but most of them use wearable markers or surgical node implanting techniques, which are inconvenient to patients. 
In this paper, we experiment the feasibility of using commercial 3D depth sensors with Principal Component Analysis (PCA) 
techniques to track and model the subject-specific external respiratory motion. 

 
  
 

 
1. Introduction 

Radiotherapy is a widely used technique, generally as a 
part of cancer treatment to control or kill malignant cells. Its 
goal is to eradicate tumors by delivering high enough dose 
of radiation while sparing the surrounding healthy tissues. 
Inaccurate patient setup, anatomical motion and defor-
mation, and target/normal tissue delineation errors are some 
of the reasons that radiotherapy cannot achieve desired 
goals. Respiratory-induced anatomical motion and defor-
mation contribute significantly to errors in both the radio-
therapy planning and delivery process especially in radio-
therapy of thoracic and abdominal regions [1]. If the respir-
atory motion is not accounted correctly, severe problems 
can be occurred such as target/normal tissue delineation er-
rors, dose calculation errors, expose of healthy tissues to 
high doses, and not receiving advocate dose coverage for 
clinical target volume. 

Motion encompassing, respiratory gating, breath hold-
ing, and forced shallow breathing with abdominal compres-
sion are some of the traditional methods, which have been 
used to handle the respiratory motion during radiotherapy 
[2]. All of these traditional methods have drawbacks of han-
dling patient movements, longer treatment time, patient 
training, and patient discomforts. Real-time tumor tracking 
techniques recently gained significant research interest as it 
can actively estimates the respiratory motion and continu-
ously synchronizes the beam delivery with the motion of the 
tumor. 

The Synchrony respiratory tracking system, a subsystem 
of CyberKnife, is the first technology which continuously 
synchronize beam delivery to the motion of the tumor [3]. 
The external respiratory motion is tracked using three opti-
cal fiducial markers attached to a tightly fitting vest. Small 

gold markers are implanted near the target area prior to treat-
ment to ensure the continuous correspondence between in-
ternal and external motion. The Calypso, prostate motion 
tracking system integrated in Varian (Varian Medical Sys-
tems, Palo Alto, CA), implants three tiny transponders with 
an associated wireless tracking to eliminate the need of in-
ternal-external motion modelling [4]. The BrainLAB Ex-
acTrac positioning system uses radiopaque fiducial markers 
implanted near the target isocenter with external infrared 
(IR) reflecting markers [5]. Internal markers are tracked by 
an x-ray localization system while an IR stereo camera 
tracks the external markers. Xsight Lung Tracking system 
(extension of CyberKnife system) is a respiratory motion 
tracking system of lung lesion that eliminates the need of 
implanted fiducial markers [6]. 

Most of these real-time systems use 4D X-ray computed 
tomography (CT) or magnetic resonance imaging (MRI) 
techniques to extract the respiratory motion, which is the 
reason for few problems such as slow acquisition and un-
necessary ex-pose to extra dose of ionizing. In addition, 
most of these systems have the disadvantage of invasive fi-
ducial marker implantation procedures that increase the pa-
tient preparation time and treatment time. In order to avoid 
these problems, we propose a respiratory motion tracking 

Fig. 1. Experiment setup in the laboratory environment. (a) Ex-
ample setup of the patient and the depth sensor. (b) Asus Xtion 
PRO depth sensor that is used in the experiment setup. 
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system that uses only a commercially available 3D depth 
sensor. Within the proposed system, an Asus Xtion PRO 
depth sensor is used to capture the depth images of thoracic 
and abdominal regions. Then a region of interest (ROI) 
based Principal Component Analysis (PCA) is carried out to 
model the patient specific respiratory motion. 

  
2. Proposed Method 

In our proposed method, an Asus Xtion PRO depth cam-
era is used to capture continuous depth data of the patient’s 
thoracic and abdominal region along with visual images. 
During the laboratory level experiments, three volunteers 
participated in motion data collection process. Each volun-
teer is advised to lay down in a supine position and the depth 
sensor is placed above the volunteer nearly in 75 cm dis-
tance as shown in the Fig. 1. For each volunteer, 100 con-
secutive depth frames are captured and an ROI covering the 
thoracic and abdominal area is defined to use in further pro-
cessing. Fig. 2 shows an example depth image and the se-
lected ROI. 

After capturing the depth data, PCA is applied on the in-
put data described by Equation 1, where �� is the column 
matrix of the depth data on selected ROI at frame � and � 
is the total number of depth frames (� = 100). 

 1 2[ ]NX x x x= …   (1) 

Before applying the PCA, standard deviation (� ) of the 
depth images is calculated using Equation 2 where 	 
(mean) can be defined as in Equation 3. The resultant stand-
ard deviation images are shown in the first column of Fig. 3. 
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In order to apply PCA, first the covariance matrix (
) is cal-
culated using Equation 4. Then the eigenvalues � and the 
eigenvectors � are calculated by solving Equation 5. 
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Eigenvectors are then arranged in descending order ac-
cording to the magnitude of the eigenvalues. Each eigenvec-
tor represents principal components (PC) of the input data 
where only first few principal components represent the 
dominant variance of the motion. Fig. 3 depicts the first 
three principal components of each volunteer where only 
first and second principal components show a significant 
variance. By comparing the PCA results with the standard 
deviation images, we can conclude that PCA represents a 
better motion model compared to direct depth data as depth 
values depend on the location of the sensor. 

After finding the principal components, dimension re-
duction techniques are applied to reduce the complexity of 
the depth images and represent them in fewer dimensions. 
Equation 6 can be used to reduce the complexity of the depth 
image � into 
 dimensions, where ��  represents the 
�� 
eigenvector and �� represents the reduced 
��  dimension 
value. In the experiments, only first three principal compo-
nents are considered and all the depth images are re-pro-
jected onto these three dimensions. 

Fig. 2. Example depth image and selected ROI.

Fig. 3. PCA analysis results on 100 consecutive depth images of 
respiratory motion of three volunteers. First column represents 
the standard deviation of all depth images and next three column 
represent the first three Principal Components. 

Fig. 4. Results of the dimension reduction. First principal com-
ponent represents the dominant variation of the motion compared 
to other three. (a) Each depth frame is re-project onto first three 
principal components. (b) Comparison of the first PC with second 
PC. (c) Comparison of the first PC with third PC. 
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Fig. 4(a) shows an example of re-projection using the 
depth data of volunteer 2. Two graphs in Fig.4(b) and Fig. 
4(c) compare the first principal component with second and 
third principal components. According to the comparison, 
first principal component is dominant over the other two and 
holds a significant amount of motion data. Hence, only the 
re-projection data on the first dimension is used in Fig. 5 to 
represent the respiratory motion model of each volunteer. 

 
3. Conclusions & Future Works 

This paper introduced a patient specific external respira-
tory motion modeling technique using commercial depth 
sensors. PCA is applied on 100 consecutive depth frames 
captured using Asus Xtion Pro depth camera and then a di-
mension reduction technique is applied to have a clear rep-
resentation of the respiratory motion. Even though raw 
depth data has a considerable amount of noise, proposed 
method managed to find out a smooth respiratory motion 
model by using PCA techniques. 

In the current implementation, manual ROI selection pro-
cess is carried out during the PCA and we are planning to 
use visual coded markers in order to implement an auto-
matic ROI selection process. Furthermore, we are planning 
to extend this work to find out the motion models of separate 
locations on the thoracic and abdominal region; as the cur-
rent implementation gives only an overall motion model. 
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Fig. 5. Respiratory motion modelling results of the three vol-
unteers using PCA analysis on 100 consecutive depth 
frames. 


