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Abstract

Human respiration induces considerable externalimtednal motion in the thoracic and abdominal oegi Tracking and
modeling of this motion is an important task foca@te treatment planning and dose calculationndueixternal beam
radiotherapy. Inaccurate motion tracking can caesere issues such as errors in target/normattdsiineation and incre-
ment in the volume of healthy tis-sues exposedio thoses. Different methods have been introduzeddidel the respiratory
motion, but most of them use wearable markers @ical node implanting techniques, which are in@megnt to patients.
In this paper, we experiment the feasibility ofngscommercial 3D depth sensors with Principal Conegpo Analysis (PCA)

techniques to track and model the subject-speexifiernal respiratory motion.

1. Introduction

Radiotherapy is a widely used technique, geneeslyn
part of cancer treatment to control or kill malighaells. Its
goal is to eradicate tumors by delivering high egiodose
of radiation while sparing the surrounding healtisgues.
Inaccurate patient setup, anatomical motion andrdef
mation, and target/normal tissue delineation erapessome
of the reasons that radiotherapy cannot achievéredes
goals. Respiratory-induced anatomical motion anfbrede
mation contribute significantly to errors in botietradio-
therapy planning and delivery process especiallyadio-
therapy of thoracic and abdominal regions [1]h# tespir-
atory motion is not accounted correctly, severeblenms
can be occurred such as target/normal tissue ddiomeer-
rors, dose calculation errors, expose of healtbsugs to
high doses, and not receiving advocate dose coxeiag
clinical target volume.

Motion encompassing, respiratory gating, breathd-hol
ing, and forced shallow breathing with abdominahpoes-
sion are some of the traditional methods, whichehlaeen
used to handle the respiratory motion during rémictpy
[2]. All of these traditional methods have drawtsok han-
dling patient movements, longer treatment timejepat
training, and patient discomforts. Real-time turtvacking
techniques recently gained significant researcirést as it
can actively estimates the respiratory motion amwtiou-
ously synchronizes the beam delivery with the motibthe
tumor.

The Synchrony respiratory tracking system, a subsys
of CyberKnife, is the first technology which contously
synchronize beam delivery to the motion of the tuf3}.
The external respiratory motion is tracked usimgehopti-
cal fiducial markers attached to a tightly fittimgst. Small

gold markers are implanted near the target area forireat-
ment to ensure the continuous correspondence betiwee
ternal and external motion. The Calypso, prostatéian
tracking system integrated in Varian (Varian Metiggs-
tems, Palo Alto, CA), implants three tiny transperrsdwith
an associated wireless tracking to eliminate thedra in-
ternal-external motion modelling [4]. The BrainLABx-
acTrac positioning system uses radiopaque fidueéakers
implanted near the target isocenter with externflared
(IR) reflecting markers [5]. Internal markers aracked by
an x-ray localization system while an IR stereo e@m
tracks the external markers. Xsight Lung Trackiggtam
(extension of CyberKnife system) is a respiratorgtion
tracking system of lung lesion that eliminates tieed of
implanted fiducial markers [6].

Most of these real-time systems use 4D X-ray coegbut
tomography (CT) or magnetic resonance imaging (MRI)
techniques to extract the respiratory motion, whilthe
reason for few problems such as slow acquisitiah @m
necessary ex-pose to extra dose of ionizing. Intiadd
most of these systems have the disadvantage ofiuevé-
ducial marker implantation procedures that increéhegpa-
tient preparation time and treatment time. In otdeavoid
these problems, we propose a respiratory motiaskitrg
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Fig. 1. Experimentsetup in the laboratory environment. (a)
ample setup of the patient and the depth senspAdis Xtior
PRO depth sensor that is used in the experimemp set
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Fig. 2. Example depth image and selected ROI.

system that uses only a commercially available &ptlal
sensor. Within the proposed system, an Asus XtiR® P
depth sensor is used to capture the depth imagésaicic
and abdominal regions. Then a region of intere®I}R
based Principal Component Analysis (PCA) is caroetto
model the patient specific respiratory motion.

2. Proposed M ethod
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(c) Volunteer 3

In our proposed method, an Asus Xtion PRO depth-cam Fig. 3. PCAanalysis results on 100 consecutive depth imag

era is used to capture continuous depth data gfdtient’s
thoracic and abdominal region along with visual ges

During the laboratory level experiments, three atders
participated in motion data collection process.tEaalun-

teer is advised to lay down in a supine positioth tfwe depth
sensor is placed above the volunteer nearly inrmisdis-

tance as shown in the Fig. 1. For each volunte@®,cbn-
secutive depth frames are captured and an ROl icgvire

thoracic and abdominal area is defined to userthén pro-
cessing. Fig. 2 shows an example depth image andeh
lected ROI.

After capturing the depth data, PCA is appliedlmnin-
put data described by Equation 1, wherels the column
matrix of the depth data on selected ROI at franaad N
is the total number of depth framéé £ 100).

X =[XX,. .. %] (1)
Before applying the PCA, standard deviatian) (of the
depth images is calculated using Equation 2 where

(mean) can be defined as in Equation 3. The redgwdtand-
ard deviation images are shown in the first colafhig. 3.
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In order to apply PCA, first the covariance matiy is cal-
culated using Equation 4. Then the eigenvaltiend the
eigenvectorse are calculated by solving Equation 5.

1 N
=2 (6 TR0 - (@)

i=1
Ke= e (5)

respiratory motion of three volunteers. First cafurepresen
the standard deviation of all depth images and tinege colum
represent the first three Principal Components.

Eigenvectors are then arranged in descending aer
cording to the magnitude of the eigenvalues. Eaggrwec-
tor represents principal components (PC) of thettiata
where only first few principal components represtre
dominant variance of the motion. Fig. 3 depicts fingt
three principal components of each volunteer wtety
first and second principal components show a Siganit
variance. By comparing the PCA results with thexdtad
deviation images, we can conclude that PCA reptesen
better motion model compared to direct depth datdepth
values depend on the location of the sensor.

After finding the principal components, dimensias r
duction techniques are applied to reduce the cotitplef
the depth images and represent them in fewer dioens
Equation 6 can be used to reduce the complexityeodepth
image x into k dimensions, where, represents th&'"
eigenvector andy, represents the reducéd” dimension
value. In the experiments, only first three priradipompo-
nents are considered and all the depth imageseapeor
jected onto these three dimensions.
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Fig. 4. Results of the dimension reduction. First printipam-
ponent represents the dominant variation of théanaompare
to other three. (a) Each depth frame ipreject onto first thre
principal components. (b) Comparison of the firStwith secon
PC. (c) Comparison of the first PC with third PC.
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Fig. 4(a) shows an example of re-projection usimg t
depth data of volunteer 2. Two graphs in Fig.4( &ig.
4(c) compare the first principal component withasetand
third principal components. According to the conigam,
first principal component is dominant over the otiwe and
holds a significant amount of motion data. Henady ¢the
re-projection data on the first dimension is use#ig. 5 to
represent the respiratory motion model of eachnteler.

3. Conclusions & FutureWorks

This paper introduced a patient specific exteragpira-
tory motion modeling technique using commercial tHep
sensors. PCA is applied on 100 consecutive depthds
captured using Asus Xtion Pro depth camera and dahdin
mension reduction technique is applied to haveeardlep-
resentation of the respiratory motion. Even thoughv
depth data has a considerable amount of noise opeap
method managed to find out a smooth respiratoryianot
model by using PCA techniques.

In the current implementation, manual ROI selecpitot
cess is carried out during the PCA and we are pignio
use visual coded markers in order to implement @n-a
matic ROI selection process. Furthermore, we aaarphg
to extend this work to find out the motion modédiseparate
locations on the thoracic and abdominal regiorthascur-
rent implementation gives only an overall motiondaio
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Fig. 5. Respiratory motion modelling results of the thvek
unteers using PCA analysis on 100 consecutive
frames.
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