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Stereo Vision-Based 3D Pose Estimation of
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Abstract: In the field of computer vision and robotics, bin picking is an important application area in which object pose estimation is
necessary. Different approaches, such as 2D feature tracking and 3D surface reconstruction, have been introduced to estimate the
object pose accurately. We propose a new approach where we can use both 2D image features and 3D surface information to identify
the target object and estimate its pose accurately. First, we introduce a label detection technique using Maximally Stable Extremal
Regions (MSERs) where the label detection results are used to identify the target objects separately. Then, the 2D image features on
the detected label areas are utilized to generate 3D surface information. Finally, we calculate the 3D position and the orientation of

the target objects using the information of the 3D surface.
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L. INTRODUCTION

Bin picking is a task of picking random objects from a
container or bin, which is mostly achieved by vision-guided
robotic systems. Different computer vision techniques have
been used in order for a robot to be able to detect the shape, size,
position, and alignment of the objects in the bin accurately. Most
of the previous methods used 2D or 3D features to detect,
localize, and reliably estimate the pose of the objects.

Kirkegaard and Moeslund [1] proposed a bin picking
system, which recognize and localize multiple complex
objects only using simple visual clues (2D featured). The
methods solely depend on 2D features have drawbacks of
handling object reflection, lighting condition of the
environment and overlapping target objects. To avoid these
drawback, most of the recent researches focus not only on 2D
features but also 3D features of the objects.

Boughorbel et al. [2] used a laser rangefinder to reconstruct
the 3D scene of the target objects and find the geometry of the
bin contents to perform precise grasping operations. Berger et
al. [3] proposed another bin picking system consist of a grid
pattern projector and a visual camera. They determined the
pose of the target object by analyzing the properties of the grid
pattern projected on the objects. Park et al. [4] proposed a pose
estimation technique using range images that can be used in

* Corresponding Author

Manuscript received August 24, 2015 / revised November 14, 2015 /

accepted December 16, 2015

S-Thok SALtelE, AR, Hkeg: BT 1T e} FFEI S

(udaya@vision.knu.ackr/ellimSth@naver.com/sypark@knu.ac.kr)

2 ATE NAEAAR 2 SRR e 0] A9
A71e7/MEAK (NO. 10038660, 42 21 13 AA87 <A
7 Ao 7]E A B veER d98tEE 28 71 A
S ATAT DA AN (2014R1A1A2059784)S] A0
2 FY59L.

Copyright® ICROS 2016

robotic bin picking. Kirkegaard and Moeslund [5] developed a
bin picking system based on Harmonic Shape Contexts (HSC)
and graph-based matching. Most of the 3D based bin picking
systems use laser range scanners to reconstruct the 3D surface
of the target objects accurately [6,7].

In our proposed system, all the target objects are attached
with labels. Therefore, we proposed a method that uses 2D
features of the labels to detect the object and 3D surface
information to identify the orientation of the detected objects.
Fig. 1 shows the step-by-step pose estimation process of the
proposed bin picking system. First, two different views of the
target objects are captured using a stereo camera, and various
image processing algorithms are applied to detect the labels.
Then 2D feature points are detected in the label areas, and
feature matching is used to identify corresponding labels from
the two views. This correspondence information is used to
reconstruct the 3D surface of the objects using triangulation
technique. Final pose estimation, which includes the 3D
position and the orientation, is done based on the
reconstructed 3D surface of the label.

A detailed description of the proposed label detection
method is given in Section II while the Section III describes
how to find the 3D plane of the label. Section IV explains the
label pose estimation process, which includes the 3D position
and the orientation. Finally, the accuracy evaluation of the
proposed system is given in Section V while Section VI
concludes the paper.

II. LABEL DETECTION
In this paper, a label detection method is proposed using
Maximally Stable Extremal Regions (MSER). In computer
vision, MSER is used as a method of blob detection in images.
Matas et al. [8] first proposed this technique in 2002 to find
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Fig. 1. Proposed 3D vision based robotic bin picking system.
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Fig. 2. Results of MSER detection on various samples.
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Fig. 3. Process of label detectlon. (a) MSER detection results on the input image. (b) MSER detection results as a binary image. (c) All detected

contours. (d) Remaining contours after applying refinements.

correspondences between two images with a large viewpoint
difference. Recently, MSER technique is extensively used in
wide baseline stereo matching, text detection, and object
recognition algorithms. Continuous geometric transformations,
invariant to affine intensity changes, and scale invariance are
some of the properties of MSER, which enable it to be a stable
local detector.

In the proposed system, an MSER detection algorithm
implemented based on Component Tree data structure [9] is
used to identify the label areas approximately. Here, the
component tree is a rooted, connected tree where each node of
the component tree represents a connected region R; (extremal
region) within the input image 7;,.

Vp € R,,Vq € boundary(R) — I, (p) = 1,(q) )

These extremal regions (nodes of the component tree) are
the connected regions within the binary threshold images /7,

where g €[min(1,,),max(1,,)].
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The edges of the tree define an inclusion relationship
between the connected regions. Thus, a child region R; of a
parent region R; satisfies the following equation.

)

VpeR > peR, (©)

For each connected region R; within the tree, a stability
value y is calculated using the following equation where A is a
user-defined parameter of stability range.

)

g-Al _ g+A
RE| | R

=

Q)

The nodes of the tree that have a stability value y, which is
a local minimum along the path to the root of the tree, are then
considered as MSERs.
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Fig. 5. Creating a binary mask for separating the label areas from the rest of the image. (a) Label detection results. (b) Binary mask image created
using the label detection results. (c) Label areas after removing the background.

The proposed system use the above-explained MSER
detection algorithm to identify the image regions, which are
possibly corresponding to the label areas (see Fig. 2). We
define the minimum and maximum allowable region size
according to the target samples to avoid the detection of
unnecessary regions. The value of A is also changed according
to the target sample to achieve higher detection rate.

Then, a binary image as in Fig. 3(b) is generated using the
MSER detection results to separate the MSERs from the
background. By following this step, we were able to merge
multiple MSERs that correspond to the same label area into a
single connected component region. After generating the
binary image, a contour detection algorithm with several
refinement steps is applied for identifying the labels separately
from all detected MSERs. First, too large or too small
contours that are not corresponding to label areas are removed
by examining the contour size. All the remaining contours are
approximated to polygons using the Ramer-Douglas-Peucker
algorithm. Then we remove the polygons, which have the
following properties; not convex, not parallelepiped, have less
or more than four vertices, and have a large width to height
ratio. Fig. 3(c) shows the results of contour detection and Fig.
3(d) shows the remaining contours after applying the filters
mentioned above. Using these refinement steps, we were able
to remove the partially visible labels and unnecessary regions
detected during the MSER detection step.

Remaining contour polygons are considered as the detected
labels while the four vertices of the polygon are considered as
the corner points of the label. A corner-finding technique with
subpixel level accuracy is used to refine the four corners to
achieve higher accuracy and stability in the later stages of the

proposed bin picking system. Fig. 4 shows the final label
detection results on few samples.

1. 3D PLANE FITTING

Label plane estimation in 3D is required to identify the
position and the orientation of the label. After detecting the
labels from both left and right camera images, first, a feature
matching technique is applied to identify the label
correspondences. Then, stereo vision based 3D reconstruction
alone with a plane fitting technique is used to calculate the 3D
plane of the label.

1. Label matching

Finding the matching labels from the left and right camera
images is the first step of the label plane estimation. We match
the detected labels by extracting SIFT feature points [10] and
then finding the correspondences using feature matching. The
feature point extraction is limited only to the local label areas
by using a binary mask as in Fig. 5(b) to improve both the
accuracy and speed. We limit the number of detected feature
points in between 40 and 100 for each label on both left and
right camera images.

All the feature points extracted from the left and right
images are matched using a 1:1 comparison of each SIFT
feature descriptors based on a brute-force algorithm. We
remove the feature matching results that do not adhere to the
following conditions.

e Rotation Constraint. the angular difference between the
feature points should be less than 20°.

e Scale Constraint: scale difference between matching points
should be less than one step, or they should be on the same
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scale.

o Uniqueness Constraint: matching points that maintain one-
to-one relationship are only considered as successful
matches while the matching points with one-to-many
relationship are excluded.

After finishing the initial matching, epipolar geometry
based outlier removing technique is applied to increase the
robustness of the feature matching. According to the epipolar
geometry, when x and x' are corresponding points of a stereo
image pair in homogeneous coordinates, Fx depicts an
epipolar line of which the corresponding point x’ must lie.
Therefore, Equation 5 must hold for all pairs of corresponding
points [11].
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We calculate the fundamental matrix F using the intrinsic
camera parameters K and the essential matrix £ as in Equation
6. Camera calibration is used to find the intrinsic (K) and
extrinsic parameters ([R|z]) of the stereo camera system.

The essential matrix £ is calculated by Equation 7.

F=K")'EK"' ©6)
0 -t ¢ ||n h ns

E=[tLR=] 1. 0 A ||r m @)
=, 1, 0 |lr 7 75

In the proposed system, if the reprojection error between
two matching points x and x’ is greater than 0.75, they are
considered as outliers. We calculate the reprojection error as in
Equation 8, where d(a,b) represents the Euclidean distance

between point a and b.
g=d(x',Fx)’ +d(x,F'x')’ ®)

After completing the feature matching, all the remaining
feature points are grouped into labels using the label polygon
information. Then we use the feature matching information to
find the matching labels from the left and right images and
assigned a label ID. A look-up-table (LUT) and a sorting
algorithm are used to speed up the matching process.

2. 3D reconstruction
We reconstruct the labels using left/right correspondences
of identical label IDs. For every left/right matching points

p, =[x,y and p, =[x,,y.]', we calculate a 3D point
P=[x,.,y,,z,]" using the triangulation given in Equation 9.
Here, d=x,—x,, 0,=0,=[x,,».]", and f represent the
disparity, optical center, and focal length respectively. b is the
baseline between the cameras after stereo rectification. Fig. 6

depicts the stereo geometry of the system and Fig. 7 shows
two different 3D views of labels after reconstruction.
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Fig. 6. Stereo triangulation based 3D reconstruction geometry.
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Fig. 7. Stereo vision based 3D reconstruction of label feature points.

3. Plane fitting

We calculate the plane equation of a label using the
reconstructed 3D points that belong to the label area. In
general, the equation of a 3D plane can be expressed as
ax+by+cz+d=0, and a,b,c,d should be known to
determine the plane. When considering the plane as a vector
P=[a,b,c,d]", the plane equation can be rewritten as in

Equation 10.

ax+by+cz+d=0 — [x y z 1] =0 (10)

QUL O > Q

If there are » number of 3D points that belong to the 3D plane,
P can be calculated using the linear equation
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Single Value Decomposition (SVD) is used to determine the
P from the above linear equation. If the dot product between
camera Z axis and the plane normal is a positive value, P is
negated to change the surface normal towards the camera
plane.

IV. LABEL POSE ESTIMATION
We estimate the label pose, which includes the 3D position
and the orientation reference to the left camera origin, using
the four corners and the 3D plane of the label.

1. Label position
If any corner of the label in the image plane is p,(x;,»;)

and the intrinsic camera matrix is K, vector e; depicted in Fig.
8 can be calculated using Equation 12.

o =K'[p1I (12)

When the 3D plane of the label is defined as P =[a,b,c,d]
and the normalized vector of e; is denoted as &(i,/,k),

crossing point (E;) of vector e; and plane P can be found using
Equation 13 where ¢; is given by Equation 14. These crossing
points (E;) are considered as the 3D coordinates of the four
label corners. The centroid C of the label, which is calculated
using Equation 15, is used as the 3D position of the label
reference to the left camera. The normal vector N of the label
plane is defined as N =[a,b,c] using the plane equation.

E =t¢ (13)
S (14)
ai+bj +ck
1 4
C=-SE 15
4 i=1 ' ( )
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Fig. 8. Obtaining 3D coordinates of the label corner points using
back-projection.
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Fig. 9. Defining a label coordinate system to estimate the 3D
orientation of the label.

2. Label orientation

To find the 3D orientation of a label with respect to the left
camera, first, a label coordinate system is defined as in Fig. 9,
where the origin locates in one corner, X-axis goes along the
longer side of the label, Y-axis goes along the shorter side of
the label, and Z-axis goes along the normal vector of the label
plane. The distances between four corner points are used to
identify the longer side and the shorter side of the label
separately. Here, 3D Euclidean distance D=./E,  -E,,

i+l
where FE,(X.,Y,Z) is the 3D coordinates of the corner

points and “-” is the dot product, is used instead of the 2D
distance in the image plane due to the perspective view
problem.

The X, Y, and Z axis vectors of the label coordinate system
is used as the label orientation, which will be needed to rotate
the robot arm accurately. Fig. 10 shows few examples of label
pose estimation results on a 3D viewer.

2.1 Special case

In the proposed bin picking system, one set of target objects
contains labels with cut out corner edges as shown in Fig.
11(a). Due to the cut out edge, the label contains five corners,
and the proposed label detection method detects only four out
of it. For an example, if the four corners detected as in Fig.
11(b) and the origin of the label coordinate system selected as
in Fig. 11(c), determination of the Y-axis will be incorrect.

To solve this problem, first, four 3D vectors along each side
of the label are defined as shown if Fig. 11(b). Then the angle
between two vectors (Equation 16) is used to identify which
two facing sides are more parallel compared to other two. If
the longer facing sides are more parallel compared to shorter
sides, either one of the two vectors go along the longer sides
of the label is used to define the X-axis. Then the Y-axis is
determined by calculating the cross product between Z-axis
(surface normal) and X-axis. If the shorter facing sides are
more parallel, first Y-axis is defined using one of the two
vectors go along the shorter sides, and the cross product
determines the X-axis.

In the example image, longer sides (@ and b) are more
parallel compared to the shorter sides (¢ and d). Therefore,

first, vector b is defined as the X-axis and the Y-axis is
corrected as in Fig. 11(d) by finding the cross product between
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Fig. 10. Label pose estimation results. (a) Left and right input images with the label matching information. (b) 3D view of the labels with the
orientation information. (c) Enlarge view of label 7. (d) Enlarge view of label 3.
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Fig. 11. (a) A label with cut out corner edge. (b) Four corners detection result. (c¢) Incorrect identification of Y-axis. (d) Correction of Y-axis using

Z-axis and X-axis.

X and Z-axises.

G-b
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V. EXPERIMENTAL RESULTS

We implemented the proposed method in a stereo vision
system comprising two Point Grey GS2-FW-14S5C-C CCD
cameras with 6 mm lenses, which provides images of
dimensions 1290x960. The baseline between the two cameras
was about 5 cm, and the distance between the target objects
and the stereo-camera system was about 1.5 m. We calculated
the intrinsic and extrinsic parameters of the stereo camera by
calibrating the system using Zhang's camera calibration
method [12].

An experiment was conducted to evaluate the distance
measurement accuracy of the proposed stereo vision system. A
laser rangefinder (Bosch GLM250 VF Professional), which
has the measurement accuracy of £1 mm within the range of
0.05 - 250 m, was used to compare the distance measurement
results. As depicted in Fig. 12, the stereo camera, and laser
rangefinder was attached to a sliding bar and move it
horizontally to measure the distance to a selected object using
the both methods. A flat calibration board was used to calibrate
the vertical error between the stereo camera and the laser
rangefinder as shown in Fig. 13. We placed the calibration
board in different locations and measured the distance to a
particular point on the pattern board using the laser
rangefinder and the stereo system. Average distance difference
between the two devices was used as the vertical offset.
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Fig. 12. Accuracy analysis of 3D pose estimation results using a
laser rangefinder.

The distance measurement accuracy of the proposed system
was evaluated with four different object samples, which are
shown in Fig. 14. Three rounds of distance measurements tests
were conducted for each sample, and 10-15 labels were used
in each round. The average measurement errors are given in
the Table 1 along with the number of labels used for each test.
The graph in Fig. 15 depicts these results along with the
standard deviation of the error. For all samples, the proposed
system could achieve an average distance error of 0.97 mm,
which is good enough for industrial bin picking systems.

Pose estimation accuracy of the proposed system could not
be evaluated as no ground truth data is available describing the
object pose. Due to the reference bin-picking systems are
based on very different approaches and the implementation
details are not available, we could not directly compare the

(b) Sample 2.
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Fig. 14. Four different types of samples used for accuracy analysis.

(a) Sample 1.

)

Lser Origir
N Caners Quge ) OffSer

T 13 glelA A Aek Z=HE e FhHet Abele] A &
EP L)

Fig. 13. Correction of the distance offset between the laser
rangefinder and the stereo camera using a calibration board.

proposed method with them.

Finally, we evaluated the processing time of the proposed
method by measuring the time used for the two stages; label
detection and 3D pose estimation separately. All the
computations were performed on a common PC with a 3.9
GHz Core i7 CPU and 8 GB RAM. The OpenCV library was
used for image processing and 3D vision tasks. For each
sample, we got the average value after measuring the
processing time of 20 consecutive frames. The results are
given in Table 2. The processing time mainly depends on the
number of labels visible on one image frame.

VI. CONCLUSIONS
We proposed an object pose estimation method, which can
be used for robotic bin picking systems, employing stereo
vision techniques. First, MSER based label detection
technique was proposed to identify target objects on the
images captured from a stereo camera. A 2D feature matching

(c) Sample 3. (d) Sample 4.
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Table 1. Average distance error for each sample during the three rounds of measurement. Number of labels used for each sample and each round is

also given here.
Sample 1 Sample 2 Sample 3 Sample 4
Test 1 # Labels 14 15 14 12
Avg. Error (mm) 0.762 1.137 0.570 1.100
# Labels 12 15 14 10
Test2
Avg, Error (mm) 0.813 1.737 0.377 1.209
Test 3 # Labels 15 13 12 11
Avg. Error (mm) 0.668 0.971 0.634 1.707
Average Distance Error 0.748 1.282 0.527 1.339
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Fig. 15. Illustration of the average and the standard deviation of the distance measurement error.
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Table 2. Average processing time for one image frame. The average time used for the label detection process and the pose estimation process are
given in the first and second rows of the table respectively. All the data are given in seconds (s).

Sample 1 Sample 2 Sample 3 Sample 4
Label Detection 0.36 0.34 0.17 0.21
Pose Estimation 1.12 1.09 042 043
Total 1.48 143 0.59 0.64
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